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Abstract

Navigation or dynamic scheduling of applications on
computational grids can be improved through the use of dy-
namic characterization of grid resources. We use the NAS
Grid Benchmarks to map performance of grid resources
into a “GridScape” representing the dynamic state of the
grid. Then, we use the GridScape for automatic assign-
ment of these tasks to grid resources. For a moderate num-
ber of machines in our experiments, the scalability of the
scheduling system was achieved by limiting the mapping
and the scheduling overhead to a few percent of the appli-
cation resource requirements and by distributing the Grid-
Scape across the grid. The use of the GridScape in task
submission and assignment process guarantees that the ap-
plication tasks do not congest the grid. We show that our
approach reduces the turn-around time of a data mining ap-
plication and of a flow simulation application by 25-35%.

Keywords: computational grids, benchmarks, perfor-
mance, navigation, dynamic scheduling.

1 Introduction

An automated scheduling system for matching the appli-
cation requirements with dynamically changing heteroge-
neous grid resources would make the grid more efficient and
accessible by improving application turn-around times and
lowering user effort. A number of projects have been de-
voted to obtaining, monitoring, and forecasting the state of
grid resources, and to the scheduling of individual grid re-
sources and applications. These projects provide tools and
services that can be used in a navigation system, however;
the problem of congestion-free automatic navigation on the
grid remains open. Moreover, crucial components of grid
resources, such as the number of currently available pro-
cessors per grid machine and the efficiency of their use on
applications, are usually obtained with a spin test (NWS) or

by consulting a batch scheduler (MDS2), neither one suffi-
cient for making good scheduling decisions.

A navigation system considers an application as a set of
communicating tasks. It makes scheduling decisions de-
pending on the state of the tasks and the state of grid re-
sources, and takes into account the spatial component of the
grid such as latency of the communications. It is more gen-
eral than scheduling, which is traditionally considered tobe
rigid planning and assignment of known tasks to a fixed set
of resources. Our approach to the automation of navigation
is based on automatic characterization of grid resources, ex-
trapolating an application’s performance profile to relevant
grid resources, and assigning the tasks to the best fitting grid
resources. In [8] we have shown that this approach reduces
an application benchmark’s turnaround time by 20%. Scal-
ability of the system was achieved by using benchmarks that
have smaller resource requirements than the application, by
distributing the GridScape across the grid machines, and in-
volving it in the task assignment process.

In this paper we extend this approach in two directions.
First, we extend the grid mapping capabilities of the naviga-
tion system to a grid monitoring system that periodically up-
dates grid performance information. Second, we introduce
the Waiting-Assigned-Running-Executed task submission
protocol. This results in a congestion-free (cf.“Bushel of
AppLeS Problem” [2]) navigation system. The architecture
of the system is shown in Figure 1. We describe the inter-
action between servers and navigators in Section 3, and the
acquisition and use of the GridScape in Section 4.

We demonstrate the efficiency of our navigation system
on a data mining application (the Arithmetic Data Cube
(ADC) [9]) and on a flow simulation application (Cart3D
[3]), Section 5. The results in Section 6 show that our nav-
igation system reduces ADC turnaround time by 25% and
Cart3D by 35%. For our experiments we used a grid of
7 machines containing about 2,000 processors and having
peak performance of 1.6 TFLOPS, Table 1.

As an abstraction of grid resources we use aGrid-
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Figure 1. The Architecture of our Navigation
System. Each navigator executes the itera-
tions of the Navigational Cycle (see Figure 2).
The navigators and servers follow the WARE
protocol of Figure 3.

Scape—a map of the grid resources represented by a di-
rected graph, where each grid machine and router is repre-
sented as a node of the graph with an attached list of ma-
chine resources and a history of their dynamics. Communi-
cation links between machines are represented by the arcs of
the graph labeled with the observed bandwidth and latency
of the links. The initial information about the GridScape
is acquired during installation of the benchmark/application
servers (Figure 1). The dynamic component of the Grid-
Scape is measured by means of the NAS Grid Benchmarks
(NGB) during the monitoring, and by requests of the navi-
gators. The benchmarks represent typical activity of Com-
putational Fluid Dynamics applications, and their perfor-
mance results may be used as a good indicator of the effi-
ciency of using the grid resources for these applications.

We consider grid applications consisting of a number of
tasks, cf. [2]. Each task obtains its input data either from
its predecessors, or from the launching task. A task sends
data either to its successors, or to the reporting task and is
ready for execution when data from all its predecessors have
been delivered. As soon as the task has finished, it sends the
results to its successors. We model such applications by di-
rected acyclic data flow graphs. The graph nodes represent
tasks, and the arcs represent data flow between tasks.

2 Related Work

Dynamic scheduling of applications is addressed in the
Application Level Scheduler (AppLeS) project [2]. Ap-
pLeS’s agents use static and dynamic information about
both the application and the grid to select viable resource
configurations and evaluate their potential performance,
then, they interact with the resource management system
to implement application tasks. The “Bushel of AppLeS”
problem formulated in [2] is a problem of grid conges-
tion caused by applications competing for the best grid re-
sources. Our navigational system follows the WARE pro-
tocol of Section 3 and uses a dynamic GridScape, thus pre-

venting applications from overusing grid resources.
A partial map of a grid can be obtained with the Net-

work Weather Service (NWS) [15]. NWS measures end-
to-end TCP/IP performance (bandwidth and latency), avail-
able CPU fraction, and available non-paged memory. The
NWS operates a distributed set of performance sensors from
which it gathers readings of the instantaneous conditions.
It then uses numerical models to forecast what the condi-
tions will be for a given timeframe. NWS uses the UNIX
uptime andvmstat commands and spin test to obtain
the performance of grid machines. NWS employs a push
information model.

The Grid Information Protocol [6] (MDS2) provides in-
formation about grid resources and protocols to discover
this information. The implementation of MDS2 is based on
the Lightweight Directory Access Protocol (LDAP), which
has significant latency in updating the directory and thus
should be considered a repository for static information
about grid resources.

The Metascheduler for the Grid [14] is built on the Grid
Application Development Software (GrADS) architecture
[4]. The Metascheduler has the ability to discover, reserve,
and negotiate grid resources to insure that multiple schedul-
ing requests will not cause grid congestion and that all ap-
plications make progress. The Metascheduler assumes that
numerous types of grid services are working properly.

A resource Brokering Infrastructure for Computational
Grids [1] provides a job submission and monitoring mech-
anism for computational grids. It uses the Jini technology
for resource discovery and provides a plug-and-play frame-
work for scheduling algorithms and grid applications. This
infrastructure can be used with both Globus and Sun Grid
Engine.

An agent-based infrastructure for load balancing of the
grid machines that incorporates a performance-driven task
scheduler, is reported in [7]. The agents cooperate with each
other to balance workload in a global grid environment us-
ing service advertisement and discovery mechanisms.

The listed projects give a representative sampling of ex-
isting grid scheduling projects. None of the known grid
scheduling approaches use benchmark-based characteriza-
tion of grid resources to build a distributed map of those
resources. We believe that the GridScape-based approach
better fits the task of informing schedulers about available
grid resources than MFLOPS/MB based methods.

3 The Navigational Cycle

In our navigation system, tasks are submitted to the grid
resources by the navigators1, Figure 1. The decision to ac-
cept or reject a submission is performed by a server. The
navigators run on launch machines, while the servers are
on grid machines. For a given application, a navigator per-
forms the following functions:

• Obtains a list of tasks that are ready to be executed;

1In some papers on dynamic scheduling, cf. [1] they are calledbrokers.
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• Finds the grid resources that are able to execute these
tasks;

• Submits the tasks to the grid resources that will provide
the fastest advance of the application;

• Repeats this sequence until all tasks of the application
are executed.

In order for a navigator to accomplish these functions, it
should be able to understand an application’s requirements
and know the current state of grid resources.

In a grid environment, the application description should
include the software requirements (OS, compiler, libraries,
run time systems) and the application performance model
(expected execution time, parallel efficiency, memory size,
size of I/O data). These requirements and the performance
model may be created by a user or may be extracted from
the application by a tool [7].

To describe the grid resources, we use the GridScape
which lists the capabilities of grid machines and the inter-
connections between them. When deciding to submit a task,
a navigator uses a GridScape to match the task requirements
with abilities of grid resources. It compares the task re-
quirements with the current abilities of the grid resourcesas
listed in the GridScape. Then, it estimates the time it will
take to execute the task on each grid resource using a rela-
tive ranking of the resources by means of the benchmarks.
Finally, it submits the task to the resource that minimizes
the application turnaround time. In summary, the navigator
performs the routine of thenavigational cycle, Figure 2.
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Figure 2. The Navigational Cycle.

Each grid machine runs one server performing the fol-
lowing functions:

• Checks that each task was submitted with use of the
current GridScape;

• Accepts the qualified tasks for an execution;

• Returns the unqualified tasks to the navigator;

• Updates the GridScape after accepting a task and exe-
cuting a task.

The navigators and the servers follow the WARE protocol
represented in Figure 3 by passing the tasks through the
Waiting-Assigned-Running-Executed sequence of states to
insure that a task does not get assigned to a grid resource
without knowledge of its current state. This prevents both
congestion of grid resources and underuse of the resources.
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Figure 3. The transition diagram of the WARE
protocol. The thin arrows show task state
transitions. The thick arrows show up-
date/access of the GridScape.

4 Acquiring the GridScape

The GridScape serves as an abstract description of grid
resources and represents the state of the grid. The naviga-
tors use it to make submission decisions, while the servers
use it to qualify submitted jobs. As a result, the quality
of scheduling and the overall efficiency of the navigation
system depend on how well the GridScape is synchronized
with task submissions, and changes in the state of grid re-
sources.

We use three ways to update the GridScape to achieve a
good synchronization. First, each server updates the Grid-
Scape when it changes the state of a task to (or from) Run-
ning, by subtracting from (or adding to) the GridScape the
resources used by the task, Figure 3. Second, a grid monitor
periodically updates the GridScape. Finally, each navigator
can request an update to the GridScape.

The grid monitor and navigators use the Measurement
Tool (MT) of Figure 1, which can be an existing grid
performance measurement tool such asldapsearch,
grid-info-search, MDS2, NWS, or LSF [12]. As an
alternative, MT can be built from the architecture-specific
commandstraceroute, uptime, df, ps, cpustat,
andvmstat. In either case we get a characterization of the
grid resources in the terms of MFLOPS and MB. Instead,
we use the NAS Grid Benchmarks [10] for acquiring the
GridScape.

MT can be in “monitor” mode, “probe” mode, or both. In
the “monitor” mode, MT runs the NGB across all grid ma-
chines with intervals of time that are automatically adjusted
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accordingly to the grid volatility, here defined as the gradi-
ent of the benchmark’s turnaround time. The benchmarking
results, including the execution time of the tasks and the
communication times between machines, are recorded in
the GridScape. A visualization of the GridScape is shown
in Figure 4.

Figure 4. A visualization of the GridScape ob-
tained with the NGB. The dips in ED run on the
left indicate that some tasks have failed (in actual
graphs the appropriate dots have red color). The
graph on the right shows performance of the tasks
assigned to chapman. The dips indicate that the
machine was unavailable.

Each navigator can request the MT to probe a specified
subset of grid resources. The work performed by the probe
must be limited to a few percent of the work of the task to-
be-assigned. The MT grants these requests depending on
the frequency of the requests and the grid volatility. This
mechanism allows navigators to maintain a GridScape syn-
chronization with the state of the grid resources. In addi-
tion, it limits the acquisition overhead to a few percent of
the work of the navigated applications and makes the mea-
surement process scalable.

We estimate the latency and the bandwidth of the in-
terconnection links between machines by fitting measured
communication times with parameters of theLogPmodel,
cf. [11]. On machines under the control of a batch scheduler
we use information from the scheduler to get the amount
of memory available, otherwise we usemalloc() library
call. Currently, we do not have a portable method to check
the amount of available disk space on grid machines.

The grid itself is represented as a directed graph in the
GridScape. Each network and router is represented as a
node. The arcs connecting the networks and routers are ob-
tained with thetraceroute tool. On each network we
have two MT’s running on two different machines to pro-
vide fault tolerance. Each MT obtains and maintains a copy
of the GridScape for the current network.

5 Using GridScape for Navigation

To demonstrate the ability of our navigation system to re-
duce application turn-around time, we use a data-intensive

application Arithmetic Data Cube (ADC) and a flow simu-
lation packageCart3D [3].

5.1 The Arithmetic Data Cube

ADC represents a typical computation of data mining
andOn-Line Analytical Processingsystems. The main sub-
ject of these applications is a dataset characterized by a
numberd of dimension attributes and a measure attribute.
The dataset consists of tuples(i1, . . . , id, c). Each dimen-
sion attributeij assumes values in some range, say in an
interval[1, mj], andc is a cost function (a measure) associ-
ated with the tuple. A standard data mining tool is theData
Cube Operator(DCO)[5, 13], which computes views of the
dataset.

We used an implementation of ADC called AdcView
(provided by CrossZ Solutions). The input ofAdcViewis
an Arithmetic Dataset [9] having integer dimension and
measure attributes. TheAdcViewoutput for a specifiedk-
element subset of2d views is a sorted list ofk-tuples. For
reduction of I/O,AdcViewcomputes a view from a smallest
parent. It keeps all information on already calculated views
to provide an efficient search of the smallest parent.

For the experiments we chose a 9-attribute dataset of106

tuples and 63 views of this dataset. This results in a 44MB
dataset and a 955MB output file containing all views of the
dataset; it takes about 291 seconds on the fastest machine
of the grid to perform the whole computation.

5.2 The Cart3D

TheCart3D package [3] is a production NASA package
used for high-fidelity inviscid analysis in conceptual aero-
dynamic design. It performs CFD analysis on complex ge-
ometries. A data flow graph of theOneraM6 test case is
shown in Figure 5. It encapsulates nine executables writ-
ten in FORTRAN and C. The package includes utilities for
geometry import, surface modeling and intersection, mesh
generation, and flow simulation and analysis.

The geometry of an aircraft inCart3D is represented as
a collection of components, called aconfiguration. The
component lists, generated bynet2p3d, may be fed intotri-
angulatewhich triangulates the configuration. It converts
components specified in structured geometry sources into
intersection-ready triangulations. The output oftriangulate
is aCart3D component triangulation which is ready for in-
tersection.

The flow simulation starts with mesh generation by
cubes. Cubesproduces topologically unstructured, adap-
tively refined, Cartesian meshes around the configuration.
Reorderreorders the meshes (Mesh.c3d) produced bycubes
using a space-filling-curve ordering.FlowCart takes these
re-ordered meshes and partitions them on-the-fly onto any
number of processors.MgPrepis the mesh coarsening mod-
ule which creates coarse meshes from an initial input mesh.
These meshes are used inflowCart for multigrid conver-
gence acceleration. The flow simulation inflowCart is a
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Figure 5. The OneraM6 test case of the Cart3D
package. Grey boxes show executables,
other boxes show I/O files.

scalable, multilevel solver for the Euler equations govern-
ing the inviscid flow of a compressible fluid. Theclic and
tecplotprograms are used to analyze the simulated flow.

We used the “OneraM6” wing test case. In this case,
cubescreated a mesh with about3 · 105 cells. FlowCart
performed 31 iterations on the original mesh, 8 iterations on
the first level of refinement, and 11 iterations on the second
level of refinment. The initial conditions represented two
trajectories: one with increasing mach number, the other
with an increasing angle of attack. Each trajectory con-
tained six points; the computation at each point is indepen-
dent of the others. The overall performance of the job was
determined by profiling the execution times of each exe-
cutable and taking into account thatflowCartcan use up to
16 processors with an efficiency about of 70% on this ex-
ample.

6 Experiments

The navigation system is implemented in Java. It uses
the Java Registry to install task services on grid machines
and the Java Remote Method Invocation (RMI) to run the
benchmark tasks and to communicate data between them.
In addition, it uses the Java Native Interface (JNI) to invoke
theAdcViewandCart3D tasks written in C or FORTRAN.

We tested the navigation system on the grid – it’s nodes
are shown in Table 1. The code of the navigation system
was compiled on the U60 and installed on other machines
without modifications. The shared library routine used by
the Java Native Interface had to be recompiled on O2K and
SF880. During our experiments all grid machines had nor-
mal production loads.

To launch jobs, we implemented thejgrun command,
which has an interface similar tompirun. GridScape per-
formance was acquired by using the Java version of ED.S of
the NAS grid Benchmarks. We used automatic submission
of the servers to the queue, requesting 16 processors on the
machines controlled by the PBS batch scheduler.

We tested navigation of ADC by submitting and schedul-
ing the job using theBalancedLoad scheduler. Two
sets of performance results for 20 test runs each are shown
in Figure 6. In the first case, we used theRoundRobin
scheduler that assigns loads to the machines based on their
MFLOPs performance. The second set uses a load balanc-
ing scheduler (BalancedLoad) which uses the dynamic per-
formance information stored in the GridScape to assign the
tasks so they finish simultaneously. The graphs show that
the navigation based on a dynamic GridScape reduced ADC
turnaround time by 25%.
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Figure 6. Navigation of AdcView with 9 at-
tributes, 106 tuples, and 63 views. We used
a load balancing scheduler that tries to fin-
ishing all tasks on all grid machines at the
same time.

We tested navigation ofCart3D (Figure 5) by submitting
two trajectories containing six points each. Two sets of per-
formance results for the two trajectories are shown in Figure
7. In the first case we used theRoundRobinscheduler. In
the second case we usedGreedySched, which takes into ac-
count the current load of the grid machines and assigns a
ready task to the machine so that it executes it as quickly
as possible. The graphs show that use of a GridScape for
navigation reducesCart3D turnaround time by 35%.

7 Conclusions

We have described an architecture and implementation
of a system that automates navigation of applications on
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Table 1. The the grid machines used in our experiments.
Machine Name NP Clock Rate Peak Perf. Memory Maker Architecture Batch

(MHz) (GFLOPS) (GB) System

U60 2 450 1.8 1 SUN ULTRA60 -
O2K 32 250 16 8 SGI Origin2000 -
O2K1 128 250 64 32 SGI Origin2000 PBS
O3K1 512 400 400 262 SGI Origin3000 PBS
O3K2 1024 600 1200 256 SGI Origin3800 PBS
O3K3 256 400 200 98 SGI Origin3000 PBS
SF880 8 900 14.4 16 SUN UltraSparc 3 -
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Figure 7. Navigation of Cart3D for two trajec-
tories. The GreedySchedalgorithm assigns a
ready task to the machine which would exe-
cute it as quickly as possible.

computational grids. Our navigation system automatically
acquires a map of the grid and assigns tasks to grid ma-
chines. The system chooses resources that provide the
fastest advance of application tasks and, as a result, de-
creases application turnaround time by 25-35% in our ex-
periments. Scalability of the system is achieved by limiting
the navigation overhead to a few percent of the application
resource requirements. The navigation system follows the
“WARE” protocol, which allows our test case to avoid con-
gestion of the grid resources.
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